HOMEWORK 12 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

SECTION 5.3: THE FUNDAMENTAL THEOREM OF CALCULUS

5.3.4.

(a)
$$g(-3) = 0$$
, $g(3) = 0$

(b)
$$g(-2) \approx 2, g(-1) \approx 4, g(0) \approx 6$$

(c)
$$(-3,0)$$

(f)
$$g'(x) = f(x)$$

5.3.7.
$$\frac{1}{x^3+1}$$

5.3.15.
$$\sec^2(x)\sqrt{\tan(x) + \sqrt{\tan(x)}}$$

5.3.17.
$$3\frac{(1-3x)^3}{1+(1-3x)^2}$$

5.3.25.
$$\frac{7}{8}$$
 (antiderivative is $-\frac{1}{t^3}$)

5.3.31. 1 (antiderivative is
$$tan(t)$$
)

5.3.35.
$$\frac{\ln(9)}{2} = \ln(3)$$
 (antiderivative is $\ln(|x|)$)

5.3.41.
$$1 + (-1) = 0$$
 (split up the integral into $\int_0^{\frac{\pi}{2}} \sin(x) dx + \int_{\frac{\pi}{2}}^{\pi} \cos(x) dx$)

5.3.43. $\frac{1}{x^4}$ is discontinuous at 0 (the FTC applies only to continuous functions)

5.3.54.
$$g'(x) = 2x \frac{1}{\sqrt{2+x^8}} - \sec^2(x) \frac{1}{\sqrt{2+\sec^8(x)}}$$

Section 5.4: Indefinite Integrals and the Net Change Theorem

5.4.10.
$$\frac{v^4}{6} + \frac{2}{3}v^2 + \frac{2}{3} + C$$

5.4.12.
$$\frac{x^3}{3} + x + \tan^{-1}(x) + C$$

5.4.13.
$$-\cos(x) + \cosh(x) + C$$

5.4.25. 52 (antiderivative is
$$3x^3 + 3x^2 + x + \frac{1}{9}$$
)

5.4.37.
$$1 + \frac{\pi}{4}$$
 (antiderivative is $x + \tan(x)$)

5.4.47.
$$\frac{4}{3}$$
 (antiderivative is $y^2 - \frac{y^3}{3}$)

5.4.52. The bee population after 15 weeks

Date: Monday, April 25th, 2011.

5.4.58.

(a)
$$s(3) - s(5) = -\frac{10}{3}$$
 (antiderivative is $\frac{t^3}{3} - t^2 - 8t$)
(b) $(s(1) - s(4)) + (s(6) - s(4)) = 18 + \frac{44}{3} = \frac{98}{3}$

(b)
$$(s(1) - s(4)) + (s(6) - s(4)) = 18 + \frac{44}{3} = \frac{98}{3}$$

5.4.59.

(a)
$$v(t) = t^2 + 4t + 5$$

(b)
$$s(10) - s(0) = \frac{1750}{3}$$
 (antiderivative is $\frac{t^3}{3} + 2t^2 + 5t$)

5.4.61.
$$\frac{140}{3}$$
 (antiderivative is $9x + \frac{4}{3}x^{\frac{3}{2}}$, and $a = 0, b = 4$)

5.4.62. 1800 (antiderivative is
$$200t - 2t^2$$
, $a = 0$, $b = 10$)

Section 5.5: The substitution rule

5.5.7.
$$\frac{1}{2}\cos(x^2)$$
 $(u=x^2, du=2xdx)$

5.5.31.
$$-\frac{1}{\sin(x)}$$
 $(u = \sin(x), du = \cos(x)dx)$

5.5.39.
$$\frac{1}{3}\sec^3(x)$$
 $(u = \sec(x), du = \sec(x)\tan(x))$

5.5.46.
$$\frac{1}{5}(x^2+1)^{\frac{5}{2}} - \frac{1}{3}(x^2+1)^{\frac{3}{2}} \ (u=x^2+1, du=2xdx, x^2=u-1)$$

5.5.59.
$$e - \sqrt{e} \left(u = \frac{1}{x}, du = -\frac{1}{x^2} dx, a = 1, b = \frac{1}{2} \right)$$

5.5.73. $0 + 6\pi$ (the first integral is 0 because the function is an odd function, or use $u = 4 - x^2$, du = -2xdx, a = 0, b = 0, and the second integral represents the area of a semicircle with radius 2)

5.5.88.

- (a) For the first integral, let $u=\cos(x)$, then $du=-\sin(x)dx=-\sqrt{1-u^2}dx$, so the first integral becomes $\int_1^0 \frac{f(u)}{-\sqrt{1-u^2}}du=\int_0^1 \frac{f(u)}{\sqrt{1-u^2}}du$. For the second integral, let $u = \sin(x)$, then $du = \cos(x)dx = \sqrt{1-u^2}dx$, so the second integral becomes $\int_0^1 \frac{f(u)}{\sqrt{1-u^2}}du$, and it is now clear that both integrals are equal!
- (b) By (a) with $f(x) = x^2$ (for the first step), and the fact that $\sin^2(x) =$ $1 - \cos^2(x)$, we get:

$$\int_0^{\frac{\pi}{2}} \cos^2(x) dx = \int_0^{\frac{\pi}{2}} \sin^2(x) dx = \int_0^{\frac{\pi}{2}} 1 dx - \int_0^{\frac{\pi}{2}} \cos^2(x) dx = \frac{\pi}{2} - \int_0^{\frac{\pi}{2}} \cos^2(x) dx$$
Solving for $\int_0^2 \cos^2(x) dx$, we get:
$$\int_0^2 \cos^2(x) dx = \frac{\pi}{4}$$
, and hence
$$\int_0^2 \sin^2(x) dx = \frac{\pi}{4}$$
 (by (a))